
Customer: StrongBlock
Date: March 25th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
StrongBlock.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type of Contracts Token; Swap

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://strongblock.com/

Timeline 21.03.2022 - 23.03.2022

Changelog 24.03.2022 – Initial Review
25.03.2022 - Revising

www.hacken.io

https://strongblock.com/

Table of contents
Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Findings 8

Recommendations 10

Disclaimers 11

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by StrongBlock (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/StrongBlock/StrongerToken
Commit:

7894e2a92dcfb3616d160f039488185c371bd214
JS tests: Yes
Contracts:

Stronger.sol
Technical Documentation: Yes (https://github.com/StrongBlock/StrongChain)

Repository:
https://github.com/StrongBlock/StrongSwap

Commit:
21271267c405d2ee6db02a92b1390861602cd2e7

JS tests: Yes
Contracts:

StrongSwap.sol
Technical Documentation: No

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ EIP standards violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency

www.hacken.io

https://github.com/StrongBlock/StrongerToken
https://github.com/StrongBlock/StrongChain
https://github.com/StrongBlock/StrongSwap

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency
▪ Kill-Switch Mechanism

www.hacken.io

Executive Summary

Score measurements details can be found in the corresponding section of the
methodology.

Documentation quality
The Customer provided Litepaper and tokenomics, but there are no technical
requirements. There is no documentation for swap. Total Documentation
Quality score is 4 out of 10.

Code quality
Most of the code follows official language style guides. Unit tests were
provided. Code quality score is 10 out of 10.

Architecture quality
The architecture of the contract is clear. Architecture quality score is 10
out of 10.

Security score
As a result of the audit, security engineers found no issues. The security
score is 10 out of 10.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.4

Notices

1. The owner can mint any amount of token.

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Graph 1. The distribution of vulnerabilities after the first audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

1. Owner`s ability to change the conversion ratio anytime.

The owner can instantly change the conversion ratio without notifying
users.

Contracts: StrongSwap.sol

Function: setConversionRatio

Recommendation: make a two-step conversion ratio change, where the
first step is a request for a change, and the second is its
acceptance after a certain time or number of blocks or validate the
amount of tokens that users expect to match the one they receive.

Status: Fixed

Medium

1. Zero token transferring allowed.

There is no check for zero amount to transfer, which can lead to
excess gas consumption..

Contracts: StrongSwap.sol

Function: deposit, withdraw

Recommendation: add check if the amount to transfer is greater than
0.

Status: Fixed

Low

1. The contract has a public function that is not used internally.

The mint function is not used internally and specified as public
which uses more gas than external.

Contracts: StrongSwap.sol

Function: mint

Recommendation: replace visibility to external.

Status: Fixed

2. Tokens state variables can be defined as immutable.

State variables _strongToken and _strongerToken are initialized in
the constructor and are never changed. Using “immutable” with
unchangeable variables saves gas.

www.hacken.io

Contracts: Stronger.sol

Function: -

Recommendation: use “immutable” modifier with _strongToken and
_strongerToken.

Status: Mitigated. The Customer approved that modifier cannot be
added.

3. No messages in require conditions all over the code.

Contracts: StrongSwap.sol

Function: init, swap, swapFor, deposit, withdraw, setStrongReceiver,
setConversionRatio.

Recommendation: it is better to add error messages in important
places of the contract.

Status: Fixed

4. No caller verification in the initialization function.

There is no restriction that only the owner can call the
initialization function.

Contracts: StrongSwap.sol

Function: init

Recommendation: it is better to add only owner access to the
initialization function.

Status: Fixed

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that it should not rely on this report only
— we recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

